3 research outputs found

    Determinación de Órbitas mediante Técnicas Iterativas de Orden de Convergencia Óptimo Libres de Derivadas

    Full text link
    A partir del método de Gauss de determinación orbital, ofrecemos distintos métodos numéricos libres de derivadas que mejoran al método original diseñando una nueva familia de métodos de tipo Steffensen, de orden óptimo de convergencia.From Gauss¿ method of orbits determination, we offer several derivative-free numerical methods to improve the original method by designing a new family of Steffensen type methods of optimal order of convergence.Cambil Teba, N. (2013). Determinación de Órbitas mediante Técnicas Iterativas de Orden de Convergencia Óptimo Libres de Derivadas. http://hdl.handle.net/10251/32687.Archivo delegad

    Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach

    Get PDF
    A modified classical method for preliminary orbit determination is presented. In our proposal, the spread of the observations is considerably wider than in the original method, as well as the order of convergence of the iterative scheme involved. The numerical approach is made by using matricial weight functions, which will lead us to a class of iterative methods with a sixth local order of convergence. This is a process widely used in the design of iterative methods for solving nonlinear scalar equations, but rarely employed in vectorial cases. The numerical tests confirm the theoretical results, and the analysis of the dynamics of the problem shows the stability of the proposed schemes.The authors thank the anonymous referees for their valuable comments and suggestions. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach. Abstract and Applied Analysis. 2013. https://doi.org/10.1155/2013/960582S2013Fidkowski, K. J., Oliver, T. A., Lu, J., & Darmofal, D. L. (2005). p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics, 207(1), 92-113. doi:10.1016/j.jcp.2005.01.005Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-yBabajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., & Barati, A. (2008). A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Applied Mathematics and Computation, 200(1), 452-458. doi:10.1016/j.amc.2007.11.009Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080Darvishi, M. T., & Barati, A. (2007). Super cubic iterative methods to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(2), 1678-1685. doi:10.1016/j.amc.2006.11.022Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2013). Increasing the order of convergence of iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 252, 86-94. doi:10.1016/j.cam.2012.11.024Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647Soleymani, F., Stanimirović, P. S., & Ullah, M. Z. (2013). An accelerated iterative method for computing weighted Moore–Penrose inverse. Applied Mathematics and Computation, 222, 365-371. doi:10.1016/j.amc.2013.07.039Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Sharma, J. R., & Arora, H. (2013). On efficient weighted-Newton methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 222, 497-506. doi:10.1016/j.amc.2013.07.066Abad, M. F., Cordero, A., & Torregrosa, J. R. (2013). Fourth- and Fifth-Order Methods for Solving Nonlinear Systems of Equations: An Application to the Global Positioning System. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/586708Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zJarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem

    Full text link
    A derivative-free optimal eighth-order family of iterative methods for solving nonlinear equations is constructed using weight functions approach with divided first order differences. Its performance, along with several other derivative-free methods, is studied on the specific problem of Danchick's reformulation of Gauss' method of preliminary orbit determination. Numerical experiments show that such derivative-free, high-order methods offer significant advantages over both, the classical and Danchick's Newton approach. (C) 2014 Elsevier Inc. All rights reserved.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2014). A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem. Applied Mathematics and Computation. 232:237-246. https://doi.org/10.1016/j.amc.2014.01.056S23724623
    corecore